An estimate for the best constant in theLp-Wirtinger inequality with weights

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Constant in Sobolev Inequality

The equality sign holds in (1) i] u has the Jorm: (3) u(x) = [a + btxI,~',-'] 1-~1~ , where Ix[ = (x~ @ ...-~x~) 1⁄2 and a, b are positive constants. Sobolev inequalities, also called Sobolev imbedding theorems, are very popular among writers in part ial differential equations or in the calculus of variations, and have been investigated by a great number of authors. Nevertheless there is a ques...

متن کامل

On the Best Constant in the Moser-Onofri-Aubin Inequality

Let S2 be the 2-dimensional unit sphere and let Jα denote the nonlinear functional on the Sobolev space H1,2(S2) defined by Jα(u) = α 4 ∫

متن کامل

The Best Constant in a Fractional Hardy Inequality

We prove an optimal Hardy inequality for the fractional Laplacian on the half-space. 1. Main result and discussion Let 0 < α < 2 and d = 1, 2, . . .. The purpose of this note is to prove the following Hardy-type inequality in the half-space D = {x = (x1, . . . , xd) ∈ R : xd > 0}. Theorem 1. For every u ∈ Cc(D), (1) 1 2 ∫

متن کامل

A sharp weighted Wirtinger inequality

We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality

متن کامل

On a generalized Wirtinger inequality

Let α (p, q, r) = inf (ku0kp kukq : u ∈W 1,p per (−1, 1) \ {0} , Z 1 −1 |u|r−2 u = 0 ) . We show that α (p, q, r) = α (p, q, q) if q ≤ rp+ r − 1 α (p, q, r) < α (p, q, q) if q > (2r − 1) p generalizing results of Dacorogna-Gangbo-Subía and others. 1 The main result In the present article we discuss the following minimization problem α (p, q, r) = inf ( kukp kukq : u ∈W 1,p per (−1, 1) \ {0} , Z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces and Applications

سال: 2008

ISSN: 0972-6802

DOI: 10.1155/2008/680925