An estimate for the best constant in theLp-Wirtinger inequality with weights
نویسندگان
چکیده
منابع مشابه
Best Constant in Sobolev Inequality
The equality sign holds in (1) i] u has the Jorm: (3) u(x) = [a + btxI,~',-'] 1-~1~ , where Ix[ = (x~ @ ...-~x~) 1⁄2 and a, b are positive constants. Sobolev inequalities, also called Sobolev imbedding theorems, are very popular among writers in part ial differential equations or in the calculus of variations, and have been investigated by a great number of authors. Nevertheless there is a ques...
متن کاملOn the Best Constant in the Moser-Onofri-Aubin Inequality
Let S2 be the 2-dimensional unit sphere and let Jα denote the nonlinear functional on the Sobolev space H1,2(S2) defined by Jα(u) = α 4 ∫
متن کاملThe Best Constant in a Fractional Hardy Inequality
We prove an optimal Hardy inequality for the fractional Laplacian on the half-space. 1. Main result and discussion Let 0 < α < 2 and d = 1, 2, . . .. The purpose of this note is to prove the following Hardy-type inequality in the half-space D = {x = (x1, . . . , xd) ∈ R : xd > 0}. Theorem 1. For every u ∈ Cc(D), (1) 1 2 ∫
متن کاملA sharp weighted Wirtinger inequality
We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality
متن کاملOn a generalized Wirtinger inequality
Let α (p, q, r) = inf (ku0kp kukq : u ∈W 1,p per (−1, 1) \ {0} , Z 1 −1 |u|r−2 u = 0 ) . We show that α (p, q, r) = α (p, q, q) if q ≤ rp+ r − 1 α (p, q, r) < α (p, q, q) if q > (2r − 1) p generalizing results of Dacorogna-Gangbo-Subía and others. 1 The main result In the present article we discuss the following minimization problem α (p, q, r) = inf ( kukp kukq : u ∈W 1,p per (−1, 1) \ {0} , Z...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces and Applications
سال: 2008
ISSN: 0972-6802
DOI: 10.1155/2008/680925